BACKGROUND

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture.

AIM

To assess the optimal concentration of MSCs for promoting fracture healing in a rat model.

METHODS

Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 wk post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction.

RESULTS

Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post-fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk post-fracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture.

CONCLUSION

The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures.

Core Tip: This study focused on the optimal concentration of mesenchymal stem cells (MSCs) that affect fracture healing in a rat model of long bone shaft fracture. Factors related to the homing effect of MSCs, osteogenesis and angiogenesis were analyzed by in vivo (radiographic and histologic evaluation) as well as in vitro (reverse transcriptase-polymerase chain reaction and western blot analysis). Among the various concentrations used, the administration of at least 5.0 × 106 MSCs was optimal to promote the therapeutic effect on fracture healing.

World Journal of Stem Cells

Source link

You May Also Like

Russia sends warning to U.S. over Patriot missile defense systems

Russia on Thursday issued a warning to the U.S. over the proposed…

Mass shooting suspect said he did it to clean up Philadelphia neighborhood

The man accused of fatally shooting five people in Philadelphia Monday night…

Latest News – MarketWatch

DoorDash stock surges on ‘best quarter ever’ despite wider-than-expected loss Source link

Jury selection begins in Idaho trial of slain kids’ mother

BOISE, Idaho — Hundreds of people are expected to gather at an…